1. 问题
spring-cloud-gateway 网关新增了一个限流功能,使用的是模块自带的限流过滤器 RequestRateLimiterGatewayFilterFactory,基于令牌桶算法,通过 redis 实现。
其原理是 redis 中针对每个限流要素(比如针对接口限流),保存 2 个 key:tokenKey(令牌数量),timeKey(调用时间)。每次接口调用时,更新 tokenKey 的值为:原先的值 + (当前时间 - 原先时间)* 加入令牌的速度,如果新的 tokenKey 的值大于 1,那么允许调用,否则不允许;同时更新 redis 中 tokenKey,timeKey 的值。整个过程通过 lua 脚本实现。
在加入限流功能之前,500 客户端并发访问,tps 为 6800 req/s,50% 时延为 70ms;加入限流功能之后,tps 为 2300 req/s,50% 时延为 205ms,同时,原先 cpu 占用率几乎 600%(6 核) 变成不到 400%(cpu 跑不满了)。
2. 排查和解决过程
2.1 单个 CPU 跑满
- 查看单个线程的 cpu 占用:
[root@auth-service imf2]# top -Hp 29360top - 15:16:27 up 102 days, 18:04, 1 user, load average: 1.61, 0.72, 0.34Threads: 122 total, 9 running, 113 sleeping, 0 stopped, 0 zombie%Cpu(s): 42.0 us, 7.0 sy, 0.0 ni, 49.0 id, 0.0 wa, 0.0 hi, 2.0 si, 0.0 stKiB Mem : 7678384 total, 126844 free, 3426148 used, 4125392 buff/cacheKiB Swap: 6291452 total, 2212552 free, 4078900 used. 3347956 avail Mem PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND29415 root 20 0 6964708 1.1g 14216 R 97.9 15.1 3:01.65 java29392 root 20 0 6964708 1.1g 14216 R 27.0 15.1 0:45.42 java29391 root 20 0 6964708 1.1g 14216 R 24.8 15.1 0:43.95 java29387 root 20 0 6964708 1.1g 14216 R 23.8 15.1 0:46.38 java29388 root 20 0 6964708 1.1g 14216 R 23.4 15.1 0:48.21 java29390 root 20 0 6964708 1.1g 14216 R 23.0 15.1 0:45.93 java29389 root 20 0 6964708 1.1g 14216 R 22.3 15.1 0:44.36 java复制代码
线程 29415 几乎跑满了 cpu,查看是什么线程:
[root@auth-service imf2]# printf '%x\n' 2941572e7[root@auth-service imf2]# jstack 29360 | grep 72e7"lettuce-nioEventLoop-4-1" #40 daemon prio=5 os_prio=0 tid=0x00007f604cc92000 nid=0x72e7 runnable [0x00007f606ce90000]复制代码
果然是操作 redis 的线程,和预期一致。
- 查看 redis:cpu 占用率不超过 15%,没有 10ms 以上的慢查询。应该不会是 redis 的问题。
- 查看线程栈信息:
通过以下脚本每秒记录一次 jstack:
[root@eureka2 jstack]# cat jstack.sh#!/bin/shi=0while [ $i -lt 30 ]; do/bin/sleep 1i=`expr $i + 1`jstack 29360 > "$i".txtdone复制代码
查看 lettuce 线程主要执行哪些函数:
"lettuce-nioEventLoop-4-1" #36 daemon prio=5 os_prio=0 tid=0x00007f1eb07ab800 nid=0x4476 runnable [0x00007f1eec8fb000] java.lang.Thread.State: RUNNABLE at sun.misc.URLClassPath$Loader.findResource(URLClassPath.java:715) at sun.misc.URLClassPath.findResource(URLClassPath.java:215) at java.net.URLClassLoader$2.run(URLClassLoader.java:569) at java.net.URLClassLoader$2.run(URLClassLoader.java:567) at java.security.AccessController.doPrivileged(Native Method) at java.net.URLClassLoader.findResource(URLClassLoader.java:566) at org.springframework.boot.loader.LaunchedURLClassLoader.findResource(LaunchedURLClassLoader.java:57) at java.lang.ClassLoader.getResource(ClassLoader.java:1096) at org.springframework.core.io.ClassPathResource.resolveURL(ClassPathResource.java:155) at org.springframework.core.io.ClassPathResource.getURL(ClassPathResource.java:193) at org.springframework.core.io.AbstractFileResolvingResource.lastModified(AbstractFileResolvingResource.java:220) at org.springframework.scripting.support.ResourceScriptSource.retrieveLastModifiedTime(ResourceScriptSource.java:119) at org.springframework.scripting.support.ResourceScriptSource.isModified(ResourceScriptSource.java:109) - locked <0x000000008c074d00> (a java.lang.Object) at org.springframework.data.redis.core.script.DefaultRedisScript.getSha1(DefaultRedisScript.java:89) - locked <0x000000008c074c10> (a java.lang.Object) at org.springframework.data.redis.core.script.DefaultReactiveScriptExecutor.eval(DefaultReactiveScriptExecutor.java:113) at org.springframework.data.redis.core.script.DefaultReactiveScriptExecutor.lambda$execute$0(DefaultReactiveScriptExecutor.java:105) at org.springframework.data.redis.core.script.DefaultReactiveScriptExecutor$$Lambda$1268/1889039573.doInRedis(Unknown Source) at org.springframework.data.redis.core.script.DefaultReactiveScriptExecutor.lambda$execute$6(DefaultReactiveScriptExecutor.java:167) at org.springframework.data.redis.core.script.DefaultReactiveScriptExecutor$$Lambda$1269/1954779522.get(Unknown Source) at reactor.core.publisher.FluxDefer.subscribe(FluxDefer.java:46)复制代码
可知该线程主要在执行 ReactiveRedisTemplate 类的 execute(RedisScript script, List keys, List<?> args) 方法,即运行 lua 脚本。
猜想:既然是因为 lettuce-nioEventLoop 线程跑满了 cpu,那么通过创建多个 lettuce-nioEventLoop 线程,以充分利用多核的特点,是否可以解决呢?
以下为源码分析阶段:
// 1. RedisConnectionFactory bean 的创建依赖 ClientResources@Bean@ConditionalOnMissingBean(RedisConnectionFactory.class)public LettuceConnectionFactory redisConnectionFactory( ClientResources clientResources) throws UnknownHostException { LettuceClientConfiguration clientConfig = getLettuceClientConfiguration( clientResources, this.properties.getLettuce().getPool()); return createLettuceConnectionFactory(clientConfig);}// 2. ClientResources bean 的创建如下@Bean(destroyMethod = "shutdown")@ConditionalOnMissingBean(ClientResources.class)public DefaultClientResources lettuceClientResources() { return DefaultClientResources.create();}public static DefaultClientResources create() { return builder().build();}// 3. 创建 EventLoopGroupProvider 对象protected DefaultClientResources(Builder builder) { this.builder = builder; // 默认为 null,执行这块代码 if (builder.eventLoopGroupProvider == null) { // 设置处理 redis 连接的线程数:默认为 // Math.max(1, // SystemPropertyUtil.getInt("io.netty.eventLoopThreads", // Math.max(MIN_IO_THREADS, Runtime.getRuntime().availableProcessors()))); // 针对多核处理器,该值一般等于 cpu 的核的数量 int ioThreadPoolSize = builder.ioThreadPoolSize; if (ioThreadPoolSize < MIN_IO_THREADS) { logger.info("ioThreadPoolSize is less than {} ({}), setting to: {}", MIN_IO_THREADS, ioThreadPoolSize, MIN_IO_THREADS); ioThreadPoolSize = MIN_IO_THREADS; } this.sharedEventLoopGroupProvider = false; // 创建 EventLoopGroupProvider 对象 this.eventLoopGroupProvider = new DefaultEventLoopGroupProvider(ioThreadPoolSize); } else { this.sharedEventLoopGroupProvider = true; this.eventLoopGroupProvider = builder.eventLoopGroupProvider; } // 以下代码省略 ...}// 4. 通过 EventLoopGroupProvider 创建 EventExecutorGroup 对象public staticEventExecutorGroup createEventLoopGroup(Class type, int numberOfThreads) { if (DefaultEventExecutorGroup.class.equals(type)) { return new DefaultEventExecutorGroup(numberOfThreads, new DefaultThreadFactory("lettuce-eventExecutorLoop", true)); } // 我们采用的是 Nio 模式,会执行这个分支 if (NioEventLoopGroup.class.equals(type)) { return new NioEventLoopGroup(numberOfThreads, new DefaultThreadFactory("lettuce-nioEventLoop", true)); } if (EpollProvider.isAvailable() && EpollProvider.isEventLoopGroup(type)) { return EpollProvider.newEventLoopGroup(numberOfThreads, new DefaultThreadFactory("lettuce-epollEventLoop", true)); } if (KqueueProvider.isAvailable() && KqueueProvider.isEventLoopGroup(type)) { return KqueueProvider.newEventLoopGroup(numberOfThreads, new DefaultThreadFactory("lettuce-kqueueEventLoop", true)); } throw new IllegalArgumentException(String.format("Type %s not supported", type.getName()));}// 5. NioEventLoopGroup 继承了 MultithreadEventLoopGroup;// 创建了多个 NioEventLoop;// 每个 NioEventLoop 都是单线程;// 每个 NioEventLoop 都可以处理多个连接。public class NioEventLoopGroup extends MultithreadEventLoopGroup { ... }public abstract class MultithreadEventLoopGroup extends MultithreadEventExecutorGroup implements EventLoopGroup { ... }public final class NioEventLoop extends SingleThreadEventLoop { ... }复制代码
以上分析可知,默认创建的 RedisConnectionFactory bean 其实是支持多线程的,但通过 jstack 等方式查看 lettuce-nioEventLoop 线程却只有一个。
[root@ ~]# ss | grep 6379tcp ESTAB 0 0 ::ffff:10.201.0.27:36184 ::ffff:10.201.0.30:6379复制代码
查看 redis 连接,发现只有一个。在 Netty 中,一个 EventLoop 线程可以处理多个 Channel,但是一个 Channel 只能绑定到一个 EventLoop,这是基于线程安全和同步考虑而设计的。这解释了为什么只有一个 lettuce-nioEventLoop。
下面继续分析为什么会只有一个连接呢?继续源码分析:
// 1. 创建 RedisConnectionFactory bean@Bean@ConditionalOnMissingBean(RedisConnectionFactory.class)public LettuceConnectionFactory redisConnectionFactory( ClientResources clientResources) throws UnknownHostException { LettuceClientConfiguration clientConfig = getLettuceClientConfiguration( clientResources, this.properties.getLettuce().getPool()); return createLettuceConnectionFactory(clientConfig);}// 2. 查看 createLettuceConnectionFactory(clientConfig) 方法private LettuceConnectionFactory createLettuceConnectionFactory( LettuceClientConfiguration clientConfiguration) { if (getSentinelConfig() != null) { return new LettuceConnectionFactory(getSentinelConfig(), clientConfiguration); } if (getClusterConfiguration() != null) { return new LettuceConnectionFactory(getClusterConfiguration(), clientConfiguration); } // 没有哨兵模式,没有集群,执行这块代码 return new LettuceConnectionFactory(getStandaloneConfig(), clientConfiguration);}// 3. 获取 redis 连接private boolean shareNativeConnection = true;public LettuceReactiveRedisConnection getReactiveConnection() { // 默认为 true return getShareNativeConnection() ? new LettuceReactiveRedisConnection(getSharedReactiveConnection(), reactiveConnectionProvider) : new LettuceReactiveRedisConnection(reactiveConnectionProvider);}LettuceReactiveRedisConnection(StatefulConnectionsharedConnection, LettuceConnectionProvider connectionProvider) { Assert.notNull(sharedConnection, "Shared StatefulConnection must not be null!"); Assert.notNull(connectionProvider, "LettuceConnectionProvider must not be null!"); this.dedicatedConnection = new AsyncConnect(connectionProvider, StatefulConnection.class); this.pubSubConnection = new AsyncConnect(connectionProvider, StatefulRedisPubSubConnection.class); // 包装 sharedConnection this.sharedConnection = Mono.just(sharedConnection);}protected Mono > getConnection() { // 直接返回 sharedConnection if (sharedConnection != null) { return sharedConnection; } return getDedicatedConnection();}// 4. shareNativeConnection 是怎么来的protected StatefulConnection getSharedReactiveConnection() { return shareNativeConnection ? getOrCreateSharedReactiveConnection().getConnection() : null;}private SharedConnection getOrCreateSharedReactiveConnection() { synchronized (this.connectionMonitor) { if (this.reactiveConnection == null) { this.reactiveConnection = new SharedConnection<>(reactiveConnectionProvider, true); } return this.reactiveConnection; }}StatefulConnection getConnection() { synchronized (this.connectionMonitor) { // 第一次通过 getNativeConnection() 获取连接;之后直接返回该连接 if (this.connection == null) { this.connection = getNativeConnection(); } if (getValidateConnection()) { validateConnection(); } return this.connection; }}复制代码
分析以上源码,关键就在于 shareNativeConnection 默认为 true,导致只有一个连接。
更改 shareNativeConnection 的值为 true,并开启 lettuce 连接池,最大连接数设置为 6;再次测试,
[root@eureka2 jstack]# ss | grep 6379tcp ESTAB 0 0 ::ffff:10.201.0.27:48937 ::ffff:10.201.0.30:6379tcp ESTAB 0 0 ::ffff:10.201.0.27:35842 ::ffff:10.201.0.30:6379tcp ESTAB 0 0 ::ffff:10.201.0.27:48932 ::ffff:10.201.0.30:6379tcp ESTAB 0 0 ::ffff:10.201.0.27:48930 ::ffff:10.201.0.30:6379tcp ESTAB 0 0 ::ffff:10.201.0.27:48936 ::ffff:10.201.0.30:6379tcp ESTAB 0 0 ::ffff:10.201.0.27:48934 ::ffff:10.201.0.30:6379[root@eureka2 jstack]# jstack 23080 | grep lettuce-epollEventLoop"lettuce-epollEventLoop-4-6" #69 daemon prio=5 os_prio=0 tid=0x00007fcfa4012000 nid=0x5af2 runnable [0x00007fcfa81ef000]"lettuce-epollEventLoop-4-5" #67 daemon prio=5 os_prio=0 tid=0x00007fcf94003800 nid=0x5af0 runnable [0x00007fcfa83f1000]"lettuce-epollEventLoop-4-4" #60 daemon prio=5 os_prio=0 tid=0x00007fcfa0003000 nid=0x5ae9 runnable [0x00007fcfa8af8000]"lettuce-epollEventLoop-4-3" #59 daemon prio=5 os_prio=0 tid=0x00007fcfb00b8000 nid=0x5ae8 runnable [0x00007fcfa8bf9000]"lettuce-epollEventLoop-4-2" #58 daemon prio=5 os_prio=0 tid=0x00007fcf6c00f000 nid=0x5ae7 runnable [0x00007fcfa8cfa000]"lettuce-epollEventLoop-4-1" #43 daemon prio=5 os_prio=0 tid=0x00007fcfac248800 nid=0x5a64 runnable [0x00007fd00c2b9000]复制代码
可以看到已经建立了 6 个 redis 连接,并且创建了 6 个 eventLoop 线程。
2.2 线程阻塞
再次进行压力测试,结果如下:
[root@hystrix-dashboard wrk]# wrk -t 10 -c 500 -d 30s --latency -T 3s -s post-test.lua 'http://10.201.0.27:8888/api/v1/json'Running 30s test @ http://10.201.0.27:8888/api/v1/json 10 threads and 500 connections Thread Stats Avg Stdev Max +/- Stdev Latency 215.83ms 104.38ms 1.00s 75.76% Req/Sec 234.56 49.87 434.00 71.45% Latency Distribution 50% 210.63ms 75% 281.30ms 90% 336.78ms 99% 519.51ms 69527 requests in 30.04s, 22.43MB readRequests/sec: 2314.14Transfer/sec: 764.53KB[root@eureka2 jstack]# top -Hp 23080top - 10:08:10 up 162 days, 12:31, 2 users, load average: 2.92, 1.19, 0.53Threads: 563 total, 9 running, 554 sleeping, 0 stopped, 0 zombie%Cpu(s): 50.5 us, 10.2 sy, 0.0 ni, 36.2 id, 0.1 wa, 0.0 hi, 2.9 si, 0.0 stKiB Mem : 7677696 total, 215924 free, 3308248 used, 4153524 buff/cacheKiB Swap: 6291452 total, 6291452 free, 0 used. 3468352 avail Mem PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND23280 root 20 0 7418804 1.3g 7404 R 42.7 17.8 0:54.75 java23272 root 20 0 7418804 1.3g 7404 S 31.1 17.8 0:44.63 java23273 root 20 0 7418804 1.3g 7404 S 31.1 17.8 0:44.45 java23271 root 20 0 7418804 1.3g 7404 R 30.8 17.8 0:44.63 java23282 root 20 0 7418804 1.3g 7404 S 30.5 17.8 0:44.96 java23119 root 20 0 7418804 1.3g 7404 R 24.8 17.8 1:27.30 java23133 root 20 0 7418804 1.3g 7404 R 23.8 17.8 1:29.55 java23123 root 20 0 7418804 1.3g 7404 S 23.5 17.8 1:28.98 java23138 root 20 0 7418804 1.3g 7404 S 23.5 17.8 1:44.19 java23124 root 20 0 7418804 1.3g 7404 R 22.8 17.8 1:32.21 java23139 root 20 0 7418804 1.3g 7404 R 22.5 17.8 1:29.49 java复制代码
最终结果没有任何提升,cpu 利用率依然不超过 400%,tps 也还是在 2300 request/s;单个 cpu 利用率最高不超过 50%,说明这次的瓶颈不是 cpu。
通过 jstack 查看线程状态,
"lettuce-epollEventLoop-4-3" #59 daemon prio=5 os_prio=0 tid=0x00007fcfb00b8000 nid=0x5ae8 waiting for monitor entry [0x00007fcfa8bf8000] java.lang.Thread.State: BLOCKED (on object monitor) at org.springframework.data.redis.core.script.DefaultRedisScript.getSha1(DefaultRedisScript.java:88) - waiting to lock <0x000000008c1da690> (a java.lang.Object) at org.springframework.data.redis.core.script.DefaultReactiveScriptExecutor.eval(DefaultReactiveScriptExecutor.java:113) at org.springframework.data.redis.core.script.DefaultReactiveScriptExecutor.lambda$execute$0(DefaultReactiveScriptExecutor.java:105) at org.springframework.data.redis.core.script.DefaultReactiveScriptExecutor$$Lambda$1317/1912229933.doInRedis(Unknown Source) at org.springframework.data.redis.core.script.DefaultReactiveScriptExecutor.lambda$execute$6(DefaultReactiveScriptExecutor.java:167) at org.springframework.data.redis.core.script.DefaultReactiveScriptExecutor$$Lambda$1318/1719274268.get(Unknown Source) at reactor.core.publisher.FluxDefer.subscribe(FluxDefer.java:46) at reactor.core.publisher.FluxDoFinally.subscribe(FluxDoFinally.java:73) at reactor.core.publisher.FluxOnErrorResume.subscribe(FluxOnErrorResume.java:47) at reactor.core.publisher.MonoReduceSeed.subscribe(MonoReduceSeed.java:65) at reactor.core.publisher.MonoMapFuseable.subscribe(MonoMapFuseable.java:59) at reactor.core.publisher.MonoFlatMap.subscribe(MonoFlatMap.java:60) at reactor.core.publisher.Mono.subscribe(Mono.java:3608) at reactor.core.publisher.FluxFlatMap.trySubscribeScalarMap(FluxFlatMap.java:169) at reactor.core.publisher.MonoFlatMap.subscribe(MonoFlatMap.java:53) at reactor.core.publisher.MonoDefer.subscribe(MonoDefer.java:52) at reactor.core.publisher.MonoFlatMap$FlatMapMain.onNext(MonoFlatMap.java:150) at reactor.core.publisher.FluxSwitchIfEmpty$SwitchIfEmptySubscriber.onNext(FluxSwitchIfEmpty.java:67) at reactor.core.publisher.Operators$MonoSubscriber.complete(Operators.java:1476) at reactor.core.publisher.MonoFlatMap$FlatMapInner.onNext(MonoFlatMap.java:241) at reactor.core.publisher.Operators$MonoSubscriber.complete(Operators.java:1476) at reactor.core.publisher.MonoProcessor.subscribe(MonoProcessor.java:457) at reactor.core.publisher.MonoFlatMap$FlatMapMain.onNext(MonoFlatMap.java:150) at reactor.core.publisher.Operators$MonoSubscriber.complete(Operators.java:1476) at reactor.core.publisher.MonoHasElement$HasElementSubscriber.onNext(MonoHasElement.java:74) at reactor.core.publisher.Operators$MonoSubscriber.complete(Operators.java:1476) at reactor.core.publisher.MonoProcessor.onNext(MonoProcessor.java:389) at reactor.core.publisher.MonoNext$NextSubscriber.onNext(MonoNext.java:76) at reactor.core.publisher.FluxDoFinally$DoFinallySubscriber.onNext(FluxDoFinally.java:123) at reactor.core.publisher.FluxMap$MapSubscriber.onNext(FluxMap.java:114) at reactor.core.publisher.FluxMap$MapSubscriber.onNext(FluxMap.java:114) at reactor.core.publisher.FluxFilter$FilterSubscriber.onNext(FluxFilter.java:107) at reactor.core.publisher.MonoNext$NextSubscriber.onNext(MonoNext.java:76) at reactor.core.publisher.FluxOnErrorResume$ResumeSubscriber.onNext(FluxOnErrorResume.java:73) at reactor.core.publisher.MonoFlatMapMany$FlatMapManyInner.onNext(MonoFlatMapMany.java:238) at reactor.core.publisher.FluxDefaultIfEmpty$DefaultIfEmptySubscriber.onNext(FluxDefaultIfEmpty.java:92) at reactor.core.publisher.FluxMap$MapSubscriber.onNext(FluxMap.java:114) at reactor.core.publisher.MonoNext$NextSubscriber.onNext(MonoNext.java:76) at io.lettuce.core.RedisPublisher$RedisSubscription.onNext(RedisPublisher.java:270) at io.lettuce.core.RedisPublisher$SubscriptionCommand.complete(RedisPublisher.java:754) at io.lettuce.core.protocol.CommandWrapper.complete(CommandWrapper.java:59) at io.lettuce.core.protocol.CommandHandler.complete(CommandHandler.java:646) at io.lettuce.core.protocol.CommandHandler.decode(CommandHandler.java:604) at io.lettuce.core.protocol.CommandHandler.channelRead(CommandHandler.java:556) at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:362) at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:348) at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:340) at io.netty.channel.ChannelInboundHandlerAdapter.channelRead(ChannelInboundHandlerAdapter.java:86) at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:362) at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:348) at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:340) at io.netty.channel.ChannelInboundHandlerAdapter.channelRead(ChannelInboundHandlerAdapter.java:86) at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:362) at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:348) at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:340) at io.netty.channel.DefaultChannelPipeline$HeadContext.channelRead(DefaultChannelPipeline.java:1434) at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:362) at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:348) at io.netty.channel.DefaultChannelPipeline.fireChannelRead(DefaultChannelPipeline.java:965) at io.netty.channel.epoll.AbstractEpollStreamChannel$EpollStreamUnsafe.epollInReady(AbstractEpollStreamChannel.java:799) at io.netty.channel.epoll.EpollEventLoop.processReady(EpollEventLoop.java:433) at io.netty.channel.epoll.EpollEventLoop.run(EpollEventLoop.java:330) at io.netty.util.concurrent.SingleThreadEventExecutor$5.run(SingleThreadEventExecutor.java:897) at io.netty.util.concurrent.FastThreadLocalRunnable.run(FastThreadLocalRunnable.java:30) at java.lang.Thread.run(Thread.java:748)复制代码
有 4 个 lettuce-epollEventLoop 线程都处于 BLOCKED 状态,继续查看源码:
public class DefaultRedisScriptimplements RedisScript , InitializingBean { private @Nullable ScriptSource scriptSource; private @Nullable String sha1; private @Nullable Class resultType; public String getSha1() { // 1. 线程需要先获取 shaModifiedMonitor 锁 synchronized (shaModifiedMonitor) { // 第一次调用时或者 lua 脚本文件被修改时,需要重新计算 sha1 的值 // 否则直接返回sha1 if (sha1 == null || scriptSource.isModified()) { this.sha1 = DigestUtils.sha1DigestAsHex(getScriptAsString()); } return sha1; } } public String getScriptAsString() { try { return scriptSource.getScriptAsString(); } catch (IOException e) { throw new ScriptingException("Error reading script text", e); } }}public class ResourceScriptSource implements ScriptSource { // 只有第一次调用或者 lua 脚本文件被修改时,才会执行这个方法 @Override public String getScriptAsString() throws IOException { synchronized (this.lastModifiedMonitor) { this.lastModified = retrieveLastModifiedTime(); } Reader reader = this.resource.getReader(); return FileCopyUtils.copyToString(reader); } @Override public boolean isModified() { // 2. 每次都需要判断 lua 脚本是否被修改 // 线程需要再获取 lastModifiedMonitor 锁 synchronized (this.lastModifiedMonitor) { return (this.lastModified < 0 || retrieveLastModifiedTime() > this.lastModified); } }}复制代码
对于限流操作,重要性并没有那么高,而且计算接口调用次数的 lua 脚本,一般也不会经常改动,所以没必要获取 sha1 的值的时候都查看下脚本是否有改动;如果偶尔改动的话,可以通过新增一个刷新接口,在改动脚本文件后通过手动刷新接口来改变 sha1 的值。
所以这里,可以把同步操作去掉;我改成了这样:
public class CustomRedisScriptextends DefaultRedisScript { private @Nullable String sha1; CustomRedisScript(ScriptSource scriptSource, Class resultType) { setScriptSource(scriptSource); setResultType(resultType); this.sha1 = DigestUtils.sha1DigestAsHex(getScriptAsString()); } @Override public String getSha1() { return sha1; }}复制代码
2.3 cpu 出现大量软中断
继续测试,结果如下:
[root@hystrix-dashboard wrk]# wrk -t 10 -c 500 -d 30s -T 3s -s post-test.lua --latency 'http://10.201.0.27:8888/api/v1/json'Running 30s test @ http://10.201.0.27:8888/api/v1/json 10 threads and 500 connections Thread Stats Avg Stdev Max +/- Stdev Latency 155.60ms 110.40ms 1.07s 67.68% Req/Sec 342.90 64.88 570.00 70.35% Latency Distribution 50% 139.14ms 75% 211.03ms 90% 299.74ms 99% 507.03ms 102462 requests in 30.02s, 33.15MB readRequests/sec: 3413.13Transfer/sec: 1.10MB复制代码
cpu 利用率 500% 左右,tps 达到了 3400 req/s,性能大幅度提升。查看 cpu 状态:
[root@eureka2 imf2]# top -Hp 19021top - 16:24:09 up 163 days, 18:47, 2 users, load average: 3.03, 1.08, 0.47Threads: 857 total, 7 running, 850 sleeping, 0 stopped, 0 zombie%Cpu0 : 60.2 us, 10.0 sy, 0.0 ni, 4.3 id, 0.0 wa, 0.0 hi, 25.4 si, 0.0 st%Cpu1 : 64.6 us, 16.3 sy, 0.0 ni, 19.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st%Cpu2 : 65.7 us, 15.8 sy, 0.0 ni, 18.5 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st%Cpu3 : 54.5 us, 15.8 sy, 0.0 ni, 29.5 id, 0.3 wa, 0.0 hi, 0.0 si, 0.0 st%Cpu4 : 55.0 us, 17.8 sy, 0.0 ni, 27.2 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st%Cpu5 : 53.2 us, 16.4 sy, 0.0 ni, 30.0 id, 0.3 wa, 0.0 hi, 0.0 si, 0.0 stKiB Mem : 7677696 total, 174164 free, 3061892 used, 4441640 buff/cacheKiB Swap: 6291452 total, 6291452 free, 0 used. 3687692 avail Mem PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND19075 root 20 0 7722156 1.2g 14488 S 41.4 15.9 0:55.71 java19363 root 20 0 7722156 1.2g 14488 R 40.1 15.9 0:41.33 java19071 root 20 0 7722156 1.2g 14488 R 37.1 15.9 0:56.38 java19060 root 20 0 7722156 1.2g 14488 S 35.4 15.9 0:52.74 java19073 root 20 0 7722156 1.2g 14488 R 35.1 15.9 0:55.83 java复制代码
cpu0 利用率达到了 95.7%,几乎跑满。但是其中出现了 si(软中断): 25.4%。
查看软中断类型:
[root@eureka2 imf2]# watch -d -n 1 'cat /proc/softirqs' CPU0 CPU1 CPU2 CPU3 CPU4 CPU5 HI: 0 0 0 0 0 0 TIMER: 1629142082 990710808 852299786 606344269 586896512 566624764 NET_TX: 291570 833710 9616 5295 5358 2012064 NET_RX: 2563401537 32502894 31370533 6886869 6530120 6490002 BLOCK: 18130 1681 41404591 8751054 8695636 8763338BLOCK_IOPOLL: 0 0 0 0 0 0 TASKLET: 39225643 0 0 817 17304 2516988 SCHED: 782335782 442142733 378856479 248794679 238417109 259695794 HRTIMER: 0 0 0 0 0 0 RCU: 690827224 504025610 464412234 246695846 254062933 248859132复制代码
其中 NET_RX,CPU0 的中断次数远远大于其他 CPU,初步判断是网卡问题。
我这边网卡是 ens32,查看网卡的中断号:
[root@eureka2 imf2]# cat /proc/interrupts | grep ens 18: 2524017495 0 0 0 0 7 IO-APIC-fasteoi ens32[root@eureka2 imf2]# cat /proc/irq/18/smp_affinity01[root@eureka2 imf2]# cat /proc/irq/18/smp_affinity_list0复制代码
网卡的中断配置到了 CPU0。(01:表示 cpu0,02:cpu1,04:cpu2,08:cpu3,10:cpu4,20:cpu5)
smp_affinity:16 进制;smp_affinity_list:配置到了哪些 cpu。
查看网卡队列模式:
[root@eureka2 ~]# lspci -vvv02:00.0 Ethernet controller: Intel Corporation 82545EM Gigabit Ethernet Controller (Copper) (rev 01) Subsystem: VMware PRO/1000 MT Single Port Adapter Physical Slot: 32 Control: I/O+ Mem+ BusMaster+ SpecCycle- MemWINV+ VGASnoop- ParErr- Stepping- SERR+ FastB2B- DisINTx- Status: Cap+ 66MHz+ UDF- FastB2B- ParErr- DEVSEL=medium >TAbort-SERR-
由于是单队列模式,所以通过修改 /proc/irq/18/smp_affinity 的值不能生效。
可以通过 RPS/RFS 在软件层面模拟多队列网卡功能。
[root@eureka2 ~]# echo 3e > /sys/class/net/ens32/queues/rx-0/rps_cpus[root@eureka2 rx-0]# sysctl net.core.rps_sock_flow_entries=32768[root@eureka2 rx-0]# echo 32768 > /sys/class/net/ens32/queues/rx-0/rps_flow_cnt复制代码
/sys/class/net/ens32/queues/rx-0/rps_cpus: 1e,设置模拟网卡中断分配到 cpu1-5 上。
继续测试,
[root@hystrix-dashboard wrk]# wrk -t 10 -c 500 -d 30s -T 3s -s post-test.lua --latency 'http://10.201.0.27:8888/api/v1/json'Running 30s test @ http://10.201.0.27:8888/api/v1/json 10 threads and 500 connections Thread Stats Avg Stdev Max +/- Stdev Latency 146.75ms 108.45ms 1.01s 65.53% Req/Sec 367.80 64.55 575.00 67.93% Latency Distribution 50% 130.93ms 75% 200.72ms 90% 290.32ms 99% 493.84ms 109922 requests in 30.02s, 35.56MB readRequests/sec: 3661.21Transfer/sec: 1.18MB[root@eureka2 rx-0]# top -Hp 19021top - 09:39:49 up 164 days, 12:03, 1 user, load average: 2.76, 2.02, 1.22Threads: 559 total, 9 running, 550 sleeping, 0 stopped, 0 zombie%Cpu0 : 55.1 us, 13.0 sy, 0.0 ni, 17.5 id, 0.0 wa, 0.0 hi, 14.4 si, 0.0 st%Cpu1 : 60.1 us, 14.0 sy, 0.0 ni, 22.5 id, 0.0 wa, 0.0 hi, 3.4 si, 0.0 st%Cpu2 : 59.5 us, 14.3 sy, 0.0 ni, 22.4 id, 0.0 wa, 0.0 hi, 3.7 si, 0.0 st%Cpu3 : 58.6 us, 15.2 sy, 0.0 ni, 22.2 id, 0.0 wa, 0.0 hi, 4.0 si, 0.0 st%Cpu4 : 59.1 us, 14.8 sy, 0.0 ni, 22.7 id, 0.0 wa, 0.0 hi, 3.4 si, 0.0 st%Cpu5 : 57.7 us, 16.2 sy, 0.0 ni, 23.0 id, 0.0 wa, 0.0 hi, 3.1 si, 0.0 stKiB Mem : 7677696 total, 373940 free, 3217180 used, 4086576 buff/cacheKiB Swap: 6291452 total, 6291452 free, 0 used. 3533812 avail Mem PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND19060 root 20 0 7415812 1.2g 13384 S 40.7 16.7 3:23.05 java19073 root 20 0 7415812 1.2g 13384 R 40.1 16.7 3:20.56 java19365 root 20 0 7415812 1.2g 13384 R 40.1 16.7 2:36.65 java复制代码
可以看到软中断也分配到了 cpu1-5 上;至于为什么还是 cpu0 上软中断比例最高,猜测是因为还有一些其他中断并且默认配置在 cpu0 上?
同时,tps 也从 3400 -> 3600,提升不大。
2.4 增加 redis 连接
经过以上修改,cup 利用率还是不超过 500%,说明在某些地方还是存在瓶颈。
尝试修改了下 lettuce 连接池,
spring: redis: database: x host: x.x.x.x port: 6379 lettuce: pool: max-active: 18 min-idle: 1 max-idle: 18复制代码
主要是把 max-active 参数 6 增大到了 18,继续测试:
[root@hystrix-dashboard wrk]# wrk -t 10 -c 500 -d 120s -T 3s -s post-test.lua --latency 'http://10.201.0.27:8888/api/v1/json'Running 2m test @ http://10.201.0.27:8888/api/v1/json 10 threads and 500 connections Thread Stats Avg Stdev Max +/- Stdev Latency 117.66ms 96.72ms 1.34s 86.48% Req/Sec 485.42 90.41 790.00 70.80% Latency Distribution 50% 90.04ms 75% 156.01ms 90% 243.63ms 99% 464.04ms 578298 requests in 2.00m, 187.01MB readRequests/sec: 4815.57Transfer/sec: 1.56MB复制代码
6 核 cpu 几乎跑满,同时 tps 也从 3600 -> 4800,提升明显!
这说明之前的瓶颈出在 redis 连接上,那么如何判断 tcp 连接是瓶颈呢?(尝试通过 ss、netstat 等命令查看 tcp 发送缓冲区、接收缓冲区、半连接队列、全连接队列等,未发现问题。先放着,以后在研究)